Abstract
Ni- and Co-based (oxy)hydroxides are promising candidates for oxygen evolution reaction (OER), but their limited specific surface area and poor intrinsic conductivity lead to unsatisfied OER activity. Herein, a unique and universal self-template strategy has been developed to fabricate Fe-incorporated CoNi (oxy)hydroxide (Fe-CoNi-OH) nanosheet-assembled nanorod arrays toward OER. The reorganized nanosheet-assembled nanorod hierarchical structure induced by Fe incorporation exposes more active sites and facilitates mass transfer. Furthermore, Fe incorporation modifies the electron structure of CoNi (oxy)hydroxide (CoNi-OH), and enhances its electronic conductivity for rapid electron transport, thus intrinsically enhancing the OER activity. Consequently, the Fe-CoNi-OH possesses excellent OER activity with low overpotentials of 210, 248, 304, and 349 mV to achieve current densities of 10, 100, 500, and 1000 mA cm−2, respectively, along with a very small Tafel slope of 28.0 mV dec−1, which are superior to the CoNi-OH and benchmark RuO2. By paring the Fe-CoNi-OH anode with a CoP cathode, an outstanding alkaline electrolyzer has been constructed, which only requires cell voltages of 1.506 and 1.623 V to deliver current densities of 10 and 100 mA cm−2, respectively, and can stably work for 100 h. This work provides a universal strategy to synthesize Fe-containing hierarchical nanostructured catalysts for energy conversion application.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.