Abstract

The nitrate- and Fe(III)-reducing bacterium Paracoccus versutus LYM was characterized in terms of its ability to perform Fe(II)EDTA-NO reduction coupled with Fe(II)EDTA oxidation (NO-dependent Fe(II)EDTA oxidation, NDFO). It experienced a single anaerobic FeEDTA redox cycling through NDFO and dissimilatory Fe(III)EDTA reduction in FeEDTA culture. The increase in the Fe(II)EDTA concentration contributed to the ascending Fe(II)EDTA-NO reduction rate. The amount of glucose controlled the rate and extent of Fe(II) oxidation during NDFO. Without glucose addition, Fe(II)EDTA-NO reduction rate was at a rather slow rate even in presence of relatively sufficient Fe(II)EDTA. Unlike aqueous Fe(2+) and solid-phase Fe(II), Fe(II)EDTA could prevent cells from encrustations. These findings suggested the occurrence of NDFO preferred being beneficial via a mixotrophic physiology in the presence of an organic cosubstrate to being out of consideration for metabolic strategy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call