Abstract

Zeolitic Imidazole Framework-67 (ZIF-67), which can be large-scale synthesized under mild conditions, has been widely reported as a promising and efficient catalyst in peroxymonosulfate (PMS)-based advanced oxidation process. However, ZIF-67 typically activates PMS through a monotonous free radical reaction pathway, which limits its reusability, resistance to environmental interference, and degradation selectivity. In this study, controlled doping of Fe atoms into the lattice structure of ZIF-67 (FexCo1-x-ZIF) was employed, resulting in the nearly complete conversion of PMS to 1O2 through a unique non-radical pathway. Series of experiments, characterizations, and theoretical calculations were employed to elucidate the micro-level mechanism of PMS activation. The results indicate that the tetrahedral coordinated Co-N4 sites in ZIF-67 are transformed into unsaturated Co-N2 sites due to the competitive coordination effect upon the introduction of Fe. PMS adsorption is enhanced as both oxygen atoms bind simultaneously to the Co-N2 site, inducing the removal of a hydrogen atom from PMS and electron transfer from PMS to the Co-N2 site, thus facilitating the generation of 1O2. The 1O2-dominated non-radical degradation reaction enhances the excellent degradation performance, reusability, and environmental tolerance of the FexCo1-x-ZIF/PMS system under diverse natural water conditions, presenting significant prospects for practical applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call