Abstract

Retina is highly susceptible to oxidative damage due to its high content of polyunsaturated fatty acids (PUFAs), mainly docosahexaenoic acid (22:6 n3). Lipid peroxidation process is thought to be involved in many physiological and pathological events. Many model membranes can be used to learn more about issues that cannot be studied in biological membranes. Sonicated liposomes (SL) and non-sonicated liposomes (NSL) prepared with lipids isolated from bovine retina and characterized by dynamic light-scattering, were submitted to lipid peroxidation, under air atmosphere at 22 °C, with Fe 2+ or Fe 3+ as initiator, in different aqueous media. Conjugated dienes and trienes, determined by absorption at 234 and 270 nm respectively, and thiobarbituric acid-reactive substances were measured as a function of time. Peroxidation of SL or NSL initiated with 25 μM FeSO 4 in 20 mM Tris–HCl pH 7.4 resulted in an increase in TBARS production after a lag phase of 60 min. Incubation of both types of liposomes in water resulted in shortening of the lag phase at 30 min. When lipid peroxidation was performed in 0.15 M NaCl, lag phase completely disappeared. On the other hand, FeCl 3 (25 μM) induced a limited production of TBARS only just after 30 min of incubation. When Fe 2+- or Fe 3+-lipid peroxidation of both types of liposomes was carried out in water or 0.15 M NaCl, formation of conjugated dienes and conjugated trienes were higher than in reactions carried out in 20 mM Tris–HCl pH 7.4. Our results established that both liposome types were susceptible to Fe 2+- and Fe 3+-initiated lipid peroxidation. However, Fe 2+ showed a clearly enhanced effect on peroxidation rate and steady state concentration of oxidation products. We verified that peroxidation of liposomes made of retinal lipids is affected not only by type of initiator but also by aqueous media. This model constitutes a useful system to study formation of lipid peroxidation intermediaries and products in an aqueous environment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call