Abstract
Electromagnetic transient (EMT) simulations of power systems require accurate representation of models in a wide range of frequencies. This of course applies to the representation of transmission lines, and the phase-domain frequency-dependent line model is often used to this end. The phase-domain line model does not require modal transformation in EMT simulations but requires modal decomposition at its model identification stage, and there are cases where it fails to fix switchovers of propagation modes with respect to frequency. Thus, a frequency-dependent line model which essentially avoids modal decomposition is desired. This paper studies the possibility of a frequency-dependent line model based on the FDTD (Finite Difference Time Domain) method as a candidate which satisfies the above-mentioned requirements. First, improvements regarding computational efficiency and numerical stability are made to Kordi's FDTD-based frequency-dependent line model. Then, the following points are clarified using the developed model: (i) Waveform deformations due to propagation modes with different velocities can be reproduced completely without modal decomposition; (ii) As the time step size becomes larger, waveforms obtained by the developed model become less accurate due to the embedded filter for numerical stability. These points assure, if the error due to the embedded filter is reduced, that the developed model can become a useful frequency-dependent line model without model identification problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.