Abstract

The Finite-Difference Time-Domain (FDTD) method is used to study the frequency dependence of the transmission through a plasmonic screen with slots of sizes and spacing that were chosen using the spatially shifted beam approach to achieve subwavelength focusing. It is shown that the electric field beamwidth at the focal plane exhibits a resonance-like behavior in the vicinity of the frequency for which the meta-screen was designed to work. At this frequency range, the power flow path is shown to exhibit circulation around the slotted screen. Results are also compared with those given in [1] for a similar device working at a lower frequency range where the metallic screen behaves as a perfect electric conductor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.