Abstract
We present a fictitious domain method to avoid the staircase approximation in the study of perfect electric conductors (PEC) in the finite-difference time-domain (FDTD) method. The idea is to extend the electromagnetic field inside the PEC and to introduce a new unknown, the surface electric current density to ensure the vanishing of the tangential components of the electric field on the boundary of the PEC. This requires the use of two independent meshes: a regular three-dimensional (3-D) cubic lattice for the electromagnetic field and a triangular surface-patching for the surface electric current density. The intersection of these two meshes gives a simple coupling law between the electric field and the surface electric current density. An interesting property of this method is that it provides the surface electric current density at each time step. Furthermore, this method looks like FDTD with a special model for the PEC. Numerical results for several objects are presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.