Abstract

In this work, the problem of Fault Detection and Isolation (FDI) and Fault Tolerant Control (FTC) of wind turbines is addressed. Fault detection is based on the use of interval observers and unknown but bounded description of the noise and modeling errors. Fault isolation is based on analyzing the observed fault signatures on-line and matching them with the theoretical ones obtained using structural analysis and a row-reasoning scheme. Fault tolerant control is based on the use of virtual sensors/actuators to deal with sensor and actuator faults, respectively. More precisely, these FTC schemes, that have been proposed previously in state space form, are reformulated in input/output form. Since an active FTC strategy is used, the FTC module uses the information from the FDI module to replace the real faulty sensor/actuator by activating the corresponding virtual sensor/actuator. Virtual actuators/sensors require additionally a fault estimation module to compensate the fault. In this work, a fault estimation approach based on batch least squares is used. The performance of the proposed FDI and FTC schemes is assessed using the proposed fault scenarios considered in the wind turbine benchmark introduced in IFAC SAFEPROCESS 2009. Satisfactory results have been obtained in both FDI and FTC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.