Abstract

Reliability and availability of modern wind turbines increases in importance as the ratio in the world's power supply increases. This is important in order to increase the energy generated per unit and their lowering cost of energy and as well to ensure availability of generated power, which helps keeping the power grids stable. Advanced Fault Tolerant Control is one of the potential tools to increase reliability of modern wind turbines. A benchmark model for wind turbine fault detection and isolation and fault tolerant control has previously been proposed, and based on this benchmark an international competition on wind turbine fault tolerant control has been proposed. In this article the top three solutions from this wind fault tolerant control competition are introduced and evaluated. The evaluation presented in this paper shows that the winner of the competition performs very well on this benchmark and is especially good accommodating sensors faults. The two other evaluated solutions do also well accommodating sensors faults, but have some issues which should be worked on, before they can be considered as a full solution to the benchmark problem.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call