Abstract
Cyber crimes related to malware families are on the rise. This growth persists despite the prevalence of various antivirus software and approaches for malware detection and classification. Security experts have implemented Machine Learning (ML) techniques to identify these cyber-crimes. However, these approaches demand updated malware datasets for continuous improvements amid the evolving sophistication of malware strains. Thus, we present the FCG-MFD, a benchmark dataset with extensive Function Call Graphs (FCG) for malware family detection. This dataset guarantees resistance against emerging malware families by enabling security systems. Our dataset has two sub-datasets (FCG & Metadata) (1,00,000 samples) from VirusSamples, Virusshare, VirusSign, theZoo, Vx-underground, and MalwareBazaar curated using FCGs and metadata to optimize the efficacy of ML algorithms. We suggest a new malware analysis technique using FCGs and graph embedding networks, offering a solution to the complexity of feature engineering in ML-based malware analysis. Our approach to extracting semantic features via the Natural Language Processing (NLP) method is inspired by tasks involving sentences and words, respectively, for functions and instructions. We leverage a node2vec mechanism-based graph embedding network to generate malware embedding vectors. These vectors enable automated and efficient malware analysis by combining structural and semantic features. We use two datasets (FCG & Metadata) to assess FCG-MFD performance. F1-Scores of 99.14% and 99.28% are competitive with State-of-the-art (SOTA) methods.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have