Abstract

A method to optimize the arrangement of an fiber Bragg grating (FBG) array is described to address the need to improve the accuracy of impact localization for aerospace vehicles. The sensitive area of the FBG, which is approximately elliptical, is analyzed using finite element simulation and experimental measurement. Based on this analysis, three optimized FBG sensing arrangements are proposed to improve the coverage of the FBG sensitive area at the center, located on the side and corner positions of an experimental test sample when subject to an impact. By employing the inverse problem analysis method in multiple repetitions of impact localization experiments, the accuracy of impact localization is improved from 74% with the traditional 4-corner arrangement to 84%, 88%, and 91% respectively for the three arrangements, demonstrating the effectiveness of the optimized FBG array arrangement method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.