Abstract

BackgroundSteady-state visual evoked potential (SSVEP) is a prevalent paradigm of brain-computer interface (BCI). Recently, deep neural networks (DNNs) have been employed for SSVEP target recognition. However, current DNN models can not fully extract information from SSVEP harmonic components, and ignore the influence of non-target stimuli. New methodTo employ information of multiple sub-bands and non-target stimulus data, we propose a DNN model for SSVEP target detection, i.e., FB-EEGNet, which fuses features of multiple neural networks. Additionally, we design a multi-label for each sample and optimize the parameters of FB-EEGNet across multi-stimulus to incorporate the information from non-target stimuli. ResultsUnder the subject-specific condition, FB-EEGNet achieves the average classification accuracies (information transfer rate (ITR)) of 76.75 % (50.70 bits/min) and 89.14 % (70.45 bits/min) in a time widow of 0.7 s under the public 12-target dataset and our experimental 9-target dataset, respectively. Under the cross-subject condition, FB-EEGNet achieved mean accuracies (ITRs) of 81.72 % (67.99 bits/min) and 92.15 % (76.12 bits/min) on the public and experimental datasets in a time window of 1 s, respectively. Comparison with existing methodsFB-EEGNet shows superior performance than CCNN, EEGNet, CCA and FBCCA both for subject-dependent and subject-independent SSVEP target recognition. ConclusionFB-EEGNet can effectively extract information from multiple sub-bands and cross-stimulus targets, providing a promising way for extracting deep features in SSVEP using neural networks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.