Abstract

The problem of fault-tolerant adaptive fuzzy tracking control against actuator faults is investigated in this article for a type of uncertain nonaffine fractional-order nonlinear full-state-constrained multi-input-single-output (MISO) system. By means of the existence theorem of the implicit function and the intermediate value theorem, the design difficulty arising from nonaffine nonlinear terms is surmounted. Then, the unknown ideal control inputs are approximated by using some suitable fuzzy-logic systems. An adaptive fuzzy fault-tolerant control (FTC) approach is developed by employing the barrier Lyapunov functions and estimating the compounded disturbances. Moreover, under the drive of the reference signals, a sufficient condition ensuring semiglobal uniform ultimate boundedness is obtained for all the signals in the closed-loop system, and it is proved that all the states of nonaffine nonlinear fractional-order systems are guaranteed to remain inside the predetermined compact set. Finally, two numerical examples are provided to exhibit the validity of the designed adaptive fuzzy FTC approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.