Abstract

Analogue and digital circuits are both prone to failure because of device degradations, transient upsets and large parametric variations. Redundancy techniques, such as N-tuple modular redundancy, have been widely used to correct faulty behaviour of components and achieve high reliability for digital circuits. In this study, the authors propose a redundancy based fault-tolerant methodology for analogue circuits. In particular, the authors focus on highly reliable analogue-to-digital converter, which is a critical component in many mixed-signal systems. The authors methodology employs redundant analogue blocks and chooses the best result using an innovative analogue voter. Simulation results are reported to verify the concepts, measure the system's reliability and trade off reliability against cost and power.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.