Abstract

Neuromorphic computing uses spiking neuron network models to solve machine learning problems in a more energy-efficient way when compared to conventional artificial neural networks. However, mapping the various network components to the neuromorphic hardware is not trivial to realize the desired model for an actual simulation. Moreover, neurons and synapses could be affected by noise due to external interference or random actions of other components (i.e., neurons), which eventually lead to unreliable results. This work proposes a fault-tolerant spiking neural network mapping algorithm and architecture to a 3D network-on-chip (NoC)-based neuromorphic system (R-NASH-II) based on a rank and selection mapping mechanism (RSM). The RSM allows the ranking and rapid selection of neurons for fault-tolerant mapping. Evaluation results show that with our proposed mechanism, we could maintain a mapping efficiency of 100% with 20% spare rate and a fault rate (40%) more than in the previous mapping framework. The Monte Carlo simulation evaluation of reliability shows that the RSM mechanism has increased the mean time to failure (MTTF) of the previous mapping technique by 43% on average. Furthermore, the operational availability of the RSM for mapping to a <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$4\times 4\times 4$ </tex-math></inline-formula> (smallest) and <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$6\times 6\times 6$ </tex-math></inline-formula> (largest) NoC is 88% and 67% respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.