Abstract
Biologically-inspired packet switched network on chip (NoC) based hardware spiking neural network (SNN) architectures have been proposed as an embedded computing platform for classification, estimation and control applications. Storage of large synaptic connectivity (SNN topology) information in SNNs require large distributed on-chip memory, which poses serious challenges for compact hardware implementation of such architectures. Based on the structured neural organisation observed in human brain, a modular neural networks (MNN) design strategy partitions complex application tasks into smaller subtasks executing on distinct neural network modules, and integrates intermediate outputs in higher level functions. This paper proposes a hardware modular neural tile (MNT) architecture that reduces the SNN topology memory requirement of NoC-based hardware SNNs by using a combination of fixed and configurable synaptic connections. The proposed MNT contains a 16:16 fully-connected feed-forward SNN structure and integrates in a mesh topology NoC communication infrastructure. The SNN topology memory requirement is 50 % of the monolithic NoC-based hardware SNN implementation. The paper also presents a lookup table based SNN topology memory allocation technique, which further increases the memory utilisation efficiency. Overall the area requirement of the architecture is reduced by an average of 66 % for practical SNN application topologies. The paper presents micro-architecture details of the proposed MNT and digital neuron circuit. The proposed architecture has been validated on a Xilinx Virtex-6 FPGA and synthesised using 65 nm low-power CMOS technology. The evolvable capability of the proposed MNT and its suitability for executing subtasks within a MNN execution architecture is demonstrated by successfully evolving benchmark SNN application tasks representing classification and non-linear control functions. The paper addresses hardware modular SNN design and implementation challenges and contributes to the development of a compact hardware modular SNN architecture suitable for embedded applications
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.