Abstract

The intrinsic high parallelism and entanglement characteristics of quantum computing have made quantum image processing techniques a focus of great interest. One of the most widely used techniques in image processing is segmentation, which in one of their most basic forms can be carried out using thresholding algorithms. In this paper, a fault-tolerant quantum dual-threshold algorithm has been proposed. This algorithm has been built using only Clifford+T gates for compatibility with error detection and correction codes. Because fault-tolerant implementation of T gates has a much higher cost than other quantum gates, our focus has been on reducing the number of these gates. This has allowed adding noise tolerance, computational cost reduction, and fault tolerance to the state-of-the-art dual-threshold segmentation circuits. Since the dual-threshold image segmentation involves the comparison operation, as part of this work we have implemented two full comparator circuits. These circuits optimize the metrics T-count and T-depth with respect to the best circuit comparators currently available in the literature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.