Abstract

In the realm of connected networks, distance-based parameters, particularly the partition dimension of graphs, have extensive applications across various fields, including chemistry and computer science. A notable variant of the partition dimension is the fault-tolerant resolving partition, which is critical in computer science for networking, optimization, and navigation tasks. In networking, fault-tolerant partitioning ensures robust communication pathways even in the event of network failures or disruptions. In optimization, it aids in developing efficient algorithms capable of withstanding errors or changes in input data. In navigation systems, fault-tolerant partitioning supports reliable route planning and navigation services under uncertain or dynamic conditions. This paper focuses on the fault-tolerant partition dimension within the specific context of the cycle with chord graphs, exploring its properties and implications for enhancing the robustness and reliability of networked systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.