Abstract

In recent years, neuromorphic computing systems (NCS) based on memristive crossbar have provided a promising solution to enable acceleration of neural networks. However, Stuck-at faults in the memristor devices significantly degrade the computing accuracy of NCS. In this paper, we propose an effective fault tolerant framework for memristive crossbar-based neuromorphic computing systems. First, a fault tolerance-aware hierarchical clustering method is proposed to partition weight connections of a sparse neural network into clusters. Then, for each cluster, memristive crossbar configuration is proposed to determine a suitable size of the crossbar with consideration of both hardware cost and successful mapping rate. Next, an integer linear programming formulation is developed to derive a connection-memristor mapping for fault tolerance. Finally, an efficient matching-based heuristic algorithm is further proposed to speed-up the fault-tolerant mapping process. Experimental results show that the proposed fault tolerant framework can improve the successful mapping rate and simultaneously reduce the hardware cost.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.