Abstract

With the speedy increase of wind energy in electric networks, many important issues could emerge, where the most important matter is to maintain the connection of wind generators during fault conditions. With different faults in the electrical network, the voltage at the point of common coupling (PCC) decreases causing unwanted transients in the stator currents. This results in substantially increased fluctuations in the DC-link voltage (Vdc). To avoid this negative impact, it is a must to maintain the capability of wind generators to continue linked to the network during faults, which is depicted as low voltage ride through (LVRT) capability. This paper investigates the LVRT enhancement by two techniques, the first is based on Braking Chopper (BC) and the second method is based on electrical double-layer capacitors (EDLC), or Supercapacitor Energy Storage System (SCESS), under abnormal conditions. The full model of the permanent magnet synchronous generator (PMSG) system and FRT technique are performed in MATLAB/Simulink platform. As a consequence of the findings, both the BC and SCESS are capable to provide satisfactory performance with superior FRT capability for the SCESS compared to the BC.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.