Abstract
In this paper, a fault recovery strategy for a distribution network based on a pigeon-inspired optimization (PIO) algorithm is proposed to improve the recoverability of the network considering the increased proportion of distributed energy resources. First, an improved Kruskal algorithm-based island partitioning scheme is proposed considering the electrical distance and important load level during the island partitioning process. Secondly, a mathematical model of fault recovery is established with the objectives of reducing active power losses and minimizing the number of switching actions. The conventional PIO algorithm is improved using chaos, reverse strategy, and Cauchy perturbation strategy, and the improved pigeon-inspired optimization (IPIO) algorithm is applied to solve the problem of fault recovery of the distribution network. Finally, simulation analysis is carried out to verify the effectiveness of the proposed PIO algorithm considering a network restauration problem after fault. The results show that compared with traditional algorithms, the proposed PIO algorithm has stronger global search capability, effectively improving the node voltage after restauration and reducing circuit loss.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.