Abstract
A planetary gear train involves multiple components and has more complex kinematic relationships than a parallel gear train. Consequently, the fault characteristics extraction is more complicated. To ensure safe operation, it is necessary to properly understand the fault behavior of the planetary gear train. In the previous kinematic modeling, the relationship between the faulty tooth meshing location and the fault impact response phase is not fully considered. However, the fault impact response phase variation plays an important role in accurately characterizing the fault characteristics in the planetary gear train. To solve this problem, we analyze the relationship between the faulty tooth location variation and the fault impact response phase variation and then a novel fault response model is established. Based on this model, a revised planetary damage detection scheme is formulated. Through the simulated data analysis, it is revealed that the faulty tooth location variation not only affects the fault impact response phase, but also reallocates the sideband distributions in the response spectrum. Finally, using a laboratory planetary gear set, it is validated that the proposed model is able to reflect the real damage response better. Therefore, using the proposed model, more accurate damage features are able to be extracted from the measured vibration responses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.