Abstract
Distribution systems are continuously exposed to fault occurrences due to various reasons, such as lightning strike, failure of power system components due to aging of equipment and human errors. These phenomena affect the system reliability and results in expensive repairs, lost of productivity and power loss to customers. Since fault is unpredictable, a fast fault location and isolation is required to minimize the impact of fault in distribution systems. Therefore, many methods have been developed since the past to locate and detect faults in distribution systems with distributed generation. The methods can be divided into two categories, conventional and artificial intelligence techniques. Conventional techniques include travelling wave method and impedance based method while artificial intelligence techniques include Artificial Neural Network (ANN), Support Vector Machine (SVM), Fuzzy Logic, Genetic Algorithm (GA) and matching approach. However, fault location using intelligent methods are challenging since they require training data for processing and are time consuming. In this paper, most of the techniques that have been developed since the past and commonly used to locate and detect faults in distribution systems with distributed generation are reviewed. Research works in fault location area, the working principles, advantages and disadvantages of past works related to each fault location technique are highlighted in this paper. Hence, from this review, the opportunities in fault location research area in power distribution system can be explored further.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have