Abstract
Abstract A field study focusing on fracture systems in a fault linkage zone from the Suez Rift, Egypt, is presented to elucidate the role of fault linkage zones in the permeability structure of segmented normal faults in tight carbonate rocks. Fracture systems in the linking damage zone show significantly increased structural complexity compared to that typical of isolated faults. The linkage zone is characterized by high fracture frequencies and multiple fracture sets of different orientations. Notably, pervasive fracture corridors strike at high angles to the fault trend and are interpreted to have formed during the latest evolutionary stages of what is interpreted as a breached relay. The structural observations indicate that along segmented normal faults in carbonate rocks, fault linkage zones represents locations of progressively increased cross- and along-fault permeability through the stages of relay growth and breaching. Our findings, in combination with previously published work, indicate that fault linkage zones represent localized conduits not only for increased fluid flow across faults, but also (vertically) within fault zones. Appreciating this has wide-ranging implications for understanding fluid transport in carbonate rocks and other naturally fractured lithologies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.