Abstract
Field studies of fracture systems associated with 58 normal fault zones crosscutting sedimentary rocks were performed in the Northwest German Basin. Fracture orientations, densities, apertures and lengths, as well as fault zone structural indices, were analysed separately for fault damage zones and host rocks. The results show a pronounced difference between carbonate and clastic rocks: mainly in carbonate rocks we found presence of clear damage zones, characterized by higher fracture densities than in the host rocks. While the maximum aperture is similar for both units, the percentage of fractures with large apertures is much higher in the damage zones than in the host rocks.Based on laboratory measurements of Young's moduli and field measurements of fracture densities, we calculate effective stiffnesses Ee, that is the Young's moduli of the in situ rock masses, within the normal fault zones. Compared with carbonate rocks, Ee computed for clastic-rock damage zones decreases significantly less due to lower fracture densities. We conclude that normal fault zones in carbonate rocks have more profound effects on enhancing permeability in fluid reservoirs than those in clastic rocks. The results are of great importance for modelling the hydromechanical behaviour of normal fault zones in subsurface fluid reservoirs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.