Abstract

An FPGA-based Linux test-bed was constructed for the purpose of measuring its sensitivity to single-event upsets. The test-bed consists of two ML410 Xilinx development boards connected using a 124-pin custom connector board. The Design Under Test (DUT) consists of the “hard core” PowerPC, running the Linux OS and several peripherals implemented in “soft” (programmable) logic. Faults were injected via the Internal Configuration Access Port (ICAP). The experiments performed here demonstrate that the Linux-based system was sensitive to 92,542 upsets-less than 0.7 percent of all tested bits. Each sensitive bit in the bit-stream is mapped to the resource and user-module to which it configures. A density metric for comparing the reliability of modules within the system is presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.