Abstract

Decreasing hardware reliability makes robust firmware imperative for safety-critical applications. Hence, ensuring correct handling of errors in peripherals is a key objective during firmware design. To adequately support robustness considerations of firmware designers during implementation, an efficient qualitative fault injection method is required. This paper presents a high-speed fault injection technique based on host-compiled firmware simulation that is suitable to analyze the impact of transient faults on firmware behavior. Additionally, fault set reduction by static code analysis avoids unnecessary injection of masked and equivalent faults. Application of the proposed fault injection technique on an industrial safety-relevant automotive system-on-chip (SoC) firmware demonstrates at least three orders of magnitude speedup compared to instruction set level. In addition, a fault set reduction by 78% is achieved. While significantly reducing the required fault injection time, the presented techniques provide as accurate feedback to the designer as existing state-of-the-art approaches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.