Abstract
This work presents a method for on-line condition monitoring of a hydraulic rock drill, though some of the findings can likely be applied in other applications. A fundamental difficulty for the rock drill application is discussed, namely the similarity between frequencies of internal standing waves and rock drill operation. This results in unpredictable pressure oscillations and superposition, which makes synchronization between measurement and model difficult. To overcome this, a data driven approach is proposed. The number and types of sensors are restricted due to harsh environmental conditions, and only operational data is available. Some faults are shown to be detectable using hand-crafted engineering features, with a direct physical connection to the fault of interest. Such features are easily interpreted and are shown to be robust against disturbances. Other faults are detected by classifying measured signals against a known reference. Dynamic Time Warping is shown to be an efficient way to measure similarity for cyclic signals with stochastic elements from disturbances, wave propagation and different durations, and also for cases with very small differences in measured pressure signals. Together, the two methods enables a step towards condition monitoring of a rock drill, robustly detecting very small changes in behaviour using a minimum amount of sensors.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have