Abstract

The vibration measured from wind turbine drivetrain components is a mixture of multiple frequency modes. In practice, in wind turbine drivetrain condition monitoring systems, multiple accelerometer sensors are used to measure the vibration. Inter-channel common modes are not processed in the standard single-channel empirical mode decomposition (EMD) and it suffers from mode mixing and mode misalignment. Inter-channel correlation implies the causation of vibration mode shapes. Multivariate EMD (MEMD) possesses an enhanced spatial and spectral coherence. The mode alignment property of MEMD is used to process the inter-channel common modes, thus MEMD overcomes the limitation of mode misalignment in single-channel EMD. Still, MEMD exhibits a degree of mode mixing. White noise powers are added in separate channels to lessen the mode mixing. In this research, a novel multivariate signal processing technique, noise-assisted multivariate empirical mode signal decomposition (NA-MEMD) with a competent nonlinear Teager-Kaiser energy operator (NLTKEO), is proposed and tested for truthful extraction of instantaneous frequency and instantaneous amplitude features, and thereby ensures superior fault diagnosis performance. The dyadic filter bank structure of the proposed NA-MEMD decomposes the nonstationary vibrations effectively. The proposed method is used to predict the surface damage pattern embedded in multi-source vibrations at a low-speed planetary gear stage. The effectiveness of the proposed algorithm is tested with NREL GRC wind turbine condition monitoring benchmark datasets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.