Abstract

ABSTRACT As lithium-ion batteries are widely used in electric vehicles, safety accidents caused by battery failures emerge one after another. Nevertheless, failures caused by changes in the internal structure or characteristics of the battery, such as sudden and progressive failures, are still a serious problem for electric vehicles, challenging existing fault diagnosis methods. This paper first performs wavelet packet decomposition on the battery’s raw voltage signal to obtain high-quality low-frequency and high-frequency characteristic signal components. Then performs singular value decomposition on the characteristic signal components to extract the corresponding singular value characteristic parameters, and introduces the Manhattan average distance algorithm to battery faults. Diagnosing and locating faulty battery units using the Laida criterion (3-σ criterion) outlier detection method. Finally, actual vehicle data were used to verify the reliability, stability, accuracy of the method, and compared with the traditional Manhattan distance, correlation coefficient, information entropy methods. The method in this paper has good fault detection effects on vehicles with sudden and progressive faults vehicles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.