Abstract

For the problem of class-imbalance in the operation monitoring data of wind turbine (WT) pitch connecting bolts, an improved Borderline-SMOTE oversampling method based on “two-step decision” with adaptive selection of synthetic instances (TSDAS-SMOTE) is proposed. Then, TSDAS-SMOTE is combined with XGBoost to construct a WT pitch connection bolt fault detection model. TSDAS-SMOTE generates new samples by “two-step decision making” to avoid the problem of class–class boundary blurring that Borderline-SMOTE tends to cause when oversampling. First, the nearest neighbor sample characteristics are perceived by the fault class samples in the first decision step. If the characteristics of this fault class sample are different from the characteristics of all its nearest neighbor samples, the fault class sample is identified as interference and filtered. Second, the faulty class samples in the boundary zone are extracted as synthetic instances to generate new samples adaptively. Finally, the normal class samples in the boundary zone are used to perceive the unqualified new generated samples in the boundary zone based on the minimum Euclidean distance characteristics, and these unqualified samples are eliminated. For the second step of decision making, since the first step decision removes some of the newly generated samples, the remaining fault class samples without interference samples and boundary zone samples are used as synthetic instances to continue adaptively generating new samples. Thus, a balanced data set with clear class–class boundary zone is obtained, which is then used to train a WT pitch connection bolt fault detection model based on the XGBoost algorithm. The experimental results show that compared with six popular oversampling methods such as Borderline-SMOTE, Cluster-SMOTE, [Formula: see text]-means-SMOTE, etc., the fault detection model constructed by the proposed oversampling method is better than the compared fault detection models in terms of missed alarm rate (MAR) and false alarm rate (FAR). Therefore, it can well achieve the fault detection of large WT pitch connection bolts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call