Abstract
Fault detection in the landing gear retraction/extension hydraulic system is difficult due to uncertainties in component parameters and sensor measurement values. This work lies in the introduction of linear fractional transformation technology and uncertainty analysis theory for the construction of the diagnostic bond graph of the landing gear retraction/extension hydraulic system. Thus, interval analytical redundancy relations can be derived as well as fault signature matrices. By using the fault signature matrix, existing faults can be detected and isolated preliminary. Furthermore, interval analytical redundancy relations can be used to detect system faults in detail. The analysis results of the failure cases of the internal and external leakage of the actuator and landing gear selector valve reversing stuck show that compared to the traditional analytical redundancy relations, this method takes into account the negative factors of uncertainty, so it can effectively reduce missed diagnosis and misdiagnosis; compared to the traditional absolute diagnostic threshold, the interval diagnostic threshold is more accurate and sensitive.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.