Abstract

We propose a method to detect and identify faults in wheeled mobile robots. The idea behind the method is to use adaptive estimation to predict the outcome of several faults, and to learn them collectively as a failure pattern. Models of the system behavior under each type of fault are embedded in multiple parallel Kalman filter (KF) estimators. Each KF is tuned to a particular fault and predicts, using its embedded model, the expected values for the sensor readings. The residual, the difference between the predicted readings (based on certain assumptions for the system model and the sensor models) and the actual sensor readings, is used as an indicator of how well each filter is performing. A backpropagation neural network processes this set of residuals as a pattern and decides which fault has occurred, that is, which filter is better tuned to the correct state of the mobile robot. The technique has been implemented on a physical robot and results from experiments are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.