Abstract

Paleoseismological data for the Wasatch and San Andreas fault zones have led to the formulation of the characteristic earthquake model, which postulates that individual faults and fault segments tend to generate essentially same size or characteristic earthquakes having a relatively narrow range of magnitudes near the maximum. Analysis of scarp‐derived colluvium in trench exposures across the Wasatch fault provides estimates of the timing and displacement associated with individual surface faulting earthquakes. At all of the sites studied, the displacement per event has been consistently large; measured values range from 1.6 to 2.6 m, and the average is about 2 m. On the basis of variability in the timing of individual events as well as changes in scarp morphology and fault geometry, six major segments are recognized along the Wasatch fault. On the basis of the most likely number of surface faulting events (18) that have occurred on segments of the Wasatch fault zone during the past 8000 years, an average recurrence interval of 400–666 years with a preferred average of 444 years is calculated for the entire zone. Geologic data on the distribution of slip associated with prehistoric earthquakes and slip rates along the south‐central segment of the San Andreas fault suggest that the M 8 1857 earthquake is a characteristic earthquake for this segment. Comparisons of earthquake recurrence relationships on both the Wasatch and San Andreas faults based on historical seismicity data and geologic data show that a linear (constant b value) extrapolation of the cumulative recurrence curve from the smaller magnitudes leads to gross underestimates of the frequency of occurrence of the large or characteristic earthquakes. Only by assuming a low b value in the moderate magnitude range can the seismicity data on small earthquakes be reconciled with geologic data on large earthquakes. The characteristic earthquake appears to be a fundamental aspect of the behavior of the Wasatch and San Andreas faults and may apply to many other faults as well.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.