Abstract

Data obtained with the neutral red cytotoxicity assay reveal that human lens epithelial cells in culture are highly sensitive to low micromolar concentrations of unsaturated, cis-configured fatty acids in the following order: arachidonic acid>linolenic acid=linoleic acid=oleic acid, whereas the saturated fatty acids are much less effective. Though the cytotoxic effects of the unsaturated fatty acids could not be discerned from effects of their oxidation products, the fact that oleic acid is equally cytotoxic as linoleic acid or linolenic acid as well as previously reported findings with bovine lens epithelial cells support the idea that the unsaturated fatty acid molecules directly account for the cytotoxicity and not their products of lipid peroxidation. Bleb formation and cell retraction are early morphological signs of fatty acid-induced lens cell damage. These cellular alterations are accompanied by an aggregation of intermediate filaments in a first step, whereas the disorganization of microfilaments occurs at a later time and only at higher fatty acid concentrations. Measurements of protein-, RNA- and DNA-synthesis turned out to be much less sensitive parameters for the fatty acid-induced damage of lens cells. The uptake rate of linoleic acid by human lens cells is relatively high (4·35 fmol sec −1 per 1000 cells), 30 and 50% higher as compared with diploid human embryonal lung fibroblasts and chemically transformed mouse fibroblasts, respectively. Saturation kinetics in combination with competition between linoleic acid, oleic acid and palmitic acid on one hand and ineffectiveness of trypsin and DIDS treatment on the other hand hint at cytoplasmic fatty acid binding proteins as receptors with high binding affinity (5·55 μmol l −1, calculated for the linoleic acid–albumin complex) to be involved in the fatty acid uptake in human lens cells. Cellular fatty acid uptake is mainly influenced by the albumin concentrations present in physiological solutions. Albumin determinations in aqueous humor from 177 cataract patients reveal an age-dependent, statistically significant albumin rise with average values below 2 μmol l −1 up to the age of 40 years to about 4 μmol l −1 at the age between 80 and 90 years with single values up to 10 μmol l −1. Using physiological fatty acid mixtures it is demonstrated that fatty acid-induced lens cell damage is strongly increased by elevated albumin concentrations found in aqueous humor of the elderly, who already have cataracts. Free fatty acid induced lens cell damage as a possible cause for age-dependent cataracts as well as a molecular link between systemic diseases such as diabetes and cataract formation is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.