Abstract

Sphingolipids consist of a sphingoid base N-linked to a fatty acyl chain. Among them, sphingomyelins (SM) are major components of mammalian cells, while ceramide (Cer) plays an important role as a lipid second messenger. We have performed a quantitative lipidomic study of Cer and SM species in different mammalian tissues (adipose tissue, liver, brain and blood serum of human, mice, rat and dog), as well as in cell cultures of mammalian origin (primary hepatocytes, immortalized MDCK cells, mice melanoma b16 cells, and mice primary CD4+ T lymphocytes) using an ultra-high performance liquid chromatography coupled to time-of-flight mass spectrometry (UHPLC-ToF-MS)-based platform. The data have been compared with published, in general semi-quantitative, results from 20 other samples, with good agreement. The sphingoid base was predominantly d18-1 sphingosine (2-amino-4-octadecene-1,3-diol) in all cases. The fatty acid composition of SM was clearly different from that of Cer. In virtually all samples the most abundant Cer species were those containing C24:0 and C24:1 in their N-acyl chains, while the main species contained in SM was C16:0. Brain was the most divergent tissue, in which Cer and SM C18:0 were very abundant.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call