Abstract

Fatty acid composition and C18:2:C18:3 of soybean seed and sprout is important for soy-industries to manufacture quality products. Six soybean varieties were analyzed by gas chromatography to determine fatty acid composition and linoleic to linolenic acid ratio (C18:2:C18:3) in seed, sprout, and their structural parts. In the case of whole seed and its structural parts, significant variation in fatty acid composition and C18:2:C18:3 were observed between varieties except palmitic acid (C16:0), while all the parameters were significantly different for seed parts. Significant interactions of variety with seed parts were observed for oleic acid (C18:1), C18:2 and C18:2:C18:3. The highest saturated fatty acid, C18:1 and polyunsaturated fatty acid were recorded in seed coat, cotyledon, and seed axis, respectively. The lowest C18:2:C18:3 was found in seed axis. In the case of sprout study, variety had significant effect on all the parameters observed for whole sprout, cotyledon, root, and except C18:3 for hypocotyl. Culture days had significant effect on C16:0, C18:2 and C18:3 in whole sprouts, while only on C18:3 and C18:2:C18:3 in cotyledon. For hypocotyl, culture days had significant effect on C18:1, C18:2 and C18:2:C18:3, however, C16:0, C18:1, C18:3, and C18:2:C18:3 were significantly different in root. In sprout, days and variety interacted significantly for C16:0, C18:3 and C18:2:C18:3, and C18:1, C18:2, C18:3, and C18:2:C18:3, respectively for whole, cotyledon, and root. The significantly lowest C18:2:C18:3 (1.1) was observed in hypocotyl and root of Hwangkeumkong in 5 days. Knowledge of fatty acid composition and C18:2:C18:3 of seed, sprout, and their parts could be applicable for oil and other soy-food industries to make quality products.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call