Abstract

PurposeThis longitudinal study aimed at comparing heart rate variability (HRV) in elite athletes identified either in ‘fatigue’ or in ‘no-fatigue’ state in ‘real life’ conditions.Methods57 elite Nordic-skiers were surveyed over 4 years. R-R intervals were recorded supine (SU) and standing (ST). A fatigue state was quoted with a validated questionnaire. A multilevel linear regression model was used to analyze relationships between heart rate (HR) and HRV descriptors [total spectral power (TP), power in low (LF) and high frequency (HF) ranges expressed in ms2 and normalized units (nu)] and the status without and with fatigue. The variables not distributed normally were transformed by taking their common logarithm (log10).Results172 trials were identified as in a ‘fatigue’ and 891 as in ‘no-fatigue’ state. All supine HR and HRV parameters (Beta±SE) were significantly different (P<0.0001) between ‘fatigue’ and ‘no-fatigue’: HRSU (+6.27±0.61 bpm), logTPSU (−0.36±0.04), logLFSU (−0.27±0.04), logHFSU (−0.46±0.05), logLF/HFSU (+0.19±0.03), HFSU(nu) (−9.55±1.33). Differences were also significant (P<0.0001) in standing: HRST (+8.83±0.89), logTPST (−0.28±0.03), logLFST (−0.29±0.03), logHFST (−0.32±0.04). Also, intra-individual variance of HRV parameters was larger (P<0.05) in the ‘fatigue’ state (logTPSU: 0.26 vs. 0.07, logLFSU: 0.28 vs. 0.11, logHFSU: 0.32 vs. 0.08, logTPST: 0.13 vs. 0.07, logLFST: 0.16 vs. 0.07, logHFST: 0.25 vs. 0.14).ConclusionHRV was significantly lower in 'fatigue' vs. 'no-fatigue' but accompanied with larger intra-individual variance of HRV parameters in 'fatigue'. The broader intra-individual variance of HRV parameters might encompass different changes from no-fatigue state, possibly reflecting different fatigue-induced alterations of HRV pattern.

Highlights

  • In elite sport, athletes training loads and recovery periods are managed to transitory disturb homeostasis and to subsequently reap a higher performance level [1]

  • Uusitalo et al [12] showed that OT was associated with heart rate variability (HRV) descriptors in which high frequency (HF) power was decreased in nine female endurance athletes undergoing heavy training over a 6–9 week period

  • The average score of the 1063 tests performed was 8.84 (Standard deviation, SD = 8.94). 172 tests had a score higher than 20 indicating a ‘fatigue’ state, which amounted to 16.2% of all the tests performed

Read more

Summary

Introduction

Athletes training loads and recovery periods are managed to transitory disturb homeostasis and to subsequently reap a higher performance level [1]. This management has to avoid fatigue accumulation, which could abrade performance. In case of NFOR or OT, the increased recovery time results in a lack of training, a decrease of the physical capacities and an impaired performance [2]. Such an extreme fatigue can even cause the end of an athlete’s career. Hedelin et al [14] reported unchanged HRV values in nine overreached canoeists after increasing training load by 50% over a 6-day training camp, despite concomitant decreases in maximal blood lactate concentration, running time to fatigue, maximal and submaximal heart rate, as well as maximal oxygen uptake (V_ O2max)

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.