7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
https://doi.org/10.1111/ffe.12772
Copy DOIPublication Date: Jan 19, 2018 | |
Citations: 168 |
AbstractHot section components of aircraft engines like high pressure turbine (HPT) discs usually operate under complex loadings coupled with multi‐source uncertainties. The effect of these uncertainties on structural response of HPT discs should be accounted for its fatigue life and reliability assessment. In this study, a probabilistic framework for fatigue reliability analysis is established by incorporating FE simulations with Latin hypercube sampling to quantify the influence of material variability and load variations. Particularly, variability in material response is characterized by combining the Chaboche constitutive model with Fatemi‐Socie criterion. Results from fatigue reliability and sensitivity analysis of a HPT disc indicated that dispersions of basic variablesmust be taken into account for its fatigue reliability analysis. Moreover, the proposed framework based on the strength‐damage interference provides more reasonably correlations with its field number of flights rather than the load‐life interference one.
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.