Abstract

In recent years, it was demonstrated that Ti-Mo alloys are promising to be use as orthopedic implants. The presence of TiO2 nanotubes can increase the bioactivity and improve the osseointegration of Ti and its alloys implants, although this modification could lead to a reduction in the dynamic mechanical properties. In this context, the purpose of the present study was to obtain self-organized nanotubes on the surface of biomedical Ti-15Mo alloy and verify whether the fatigue performance was significantly changed. Organized nanotubes were obtained by anodic oxidation using ethylene glycol + NH4F solution. The axial fatigue behavior was characterized by stepwise increases of the applied load in air and in physiological media at 37°C. The results was compared with the as-polished samples in order to compare if the Ti-15Mo alloy fatigue behavior was affected by the surface modification, and it was found that the mechanical performance of the Ti-15Mo alloy was affected by the surface modification, in that specific experimental conditions used to obtain the nanotubes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.