Abstract

Coated steel belts (CSBs) are the primary load-bearing components of elevators. As a result, they may experience severe fatigue failure during their long-term service. In this study, a flexible fatigue fixture for CSBs is designed to simulate the CSB fatigue damage process for implementing a tensile fatigue test. The magnetic induction intensity signal on the surface of the CSB in a geomagnetic field environment is recorded using a high-precision weak magnetic sensor. Moreover, the CSB fatigue damage process is monitored online via the acquired magnetic induction intensity value. The fatigue test results indicate the following: the variation in the magnetic induction intensity signal curve can reflect the entire fatigue failure process when the CSB is under stress; the fatigue failure process of the steel wire inside the CSB does not occur smoothly as its progress occurs in stages; and the variation trend in the residual value between the magnetic induction intensity and fitting curves effectively indicates the degree of fatigue damage caused to the CSB.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call