Abstract
Welded joints frequently endure the composite stress of steel components. The presence of defects within these welded joints can significantly jeopardise the safety and performance of the welded structure. Magnetic memory testing technology has garnered substantial attention due to its ability to evaluate welding defects. However, the conventional zero-point pole theory, which serves as the foundation for defect assessment in practical detection, may lead to defect location and omission errors. In response to this challenge, scholars have conducted extensive research to accurately pinpoint the location and identify the types of defect within welds. This paper systematically reviews the mechanisms of magnetic memory welding defect detection, the factors that influence it, signal characteristic parameters, noise reduction in magnetic memory signals and the application of machine learning for quantitative assessment. By summarising these research advancements, this paper aims to address the current issues and provide guidance for the precise quantitative evaluation of welding defects in the future using metal magnetic memory technology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Insight - Non-Destructive Testing and Condition Monitoring
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.