Abstract

Dielectric elastomer has been extensively explored in various applications as soft active material. In most applications, dielectric elastomer is subjected to cyclic loading-unloading condition. As a result, a small initial defect in a dielectric elastomer may finally grow to a critical size to induce catastrophic rupture. In this article, we carried out an experimental study of the crack growth in an acrylic dielectric elastomer under cyclic loading-unloading. Pure-shear test specimens were used to measure the relationship between crack growth rate and energy release rate. Such relationship can be simply fit to a power-law. We further used the measured power-law to successfully predict the fatigue lifetime of the acrylic elastomer with an edge crack and subject to simple extension cyclic loading-unloading test.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.