Abstract
The application of acrylic dielectric elastomer - an electrically actuated electro active polymer for artificial muscles has been investigated to evaluate its suitability for prosthetic and orthotic devices by comparing its mechanical and electrical properties similar to that of natural skeletal muscles. Experimental studies have been performed to get the properties of acrylic dielectric elastomers for design and development of artificial skeletal muscles. Therefore, a commercially available acrylic dielectric elastomer; VHB 4910 by 3M film is subjected to uniaxial tensile tests under varying rates, stress relaxation test and loading-unloading test on the universal testing machines and undergoes an electrical actuation test after pre-straining. The results of such tests have been discussed separately and then compared with previous researches on skeletal muscles as well. Moreover, the material response is also observed highly viscous and hyper-elastic, i.e., sensitive to very high strain rates as in the case of skeletal muscles. These results can be utilised in material selection to develop dielectric elastomer actuator applications for artificial muscles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biomedical Engineering and Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.