Abstract
The present study investigates delamination damage initiation and propagation within a homogenization theory of mixtures, using the concept of virtual layers and virtual interfaces. It eliminates spatial discretization of layers, introducing a resultant damage variable to capture structure’s bulk response under both monotonic and cyclic loads. Fatigue-induced deterioration is classified into sub-critical, critical, and over-critical stages based on interfacial stresses. Calibration is conducted employing the widely-available Wöhler curves for each loading mode independently. An advance-in-time strategy is included in the model to enhance the simulation speed. The reliability of the approach is assessed for crack initiation and propagation separately through standard test coupons, showing good correlation with experimental data in mode I, mode II, and mixed-mode loading conditions. Depending on the calibration procedure adopted, the model is applicable to a wide range of stress ratios. In addition, it could be integrated into any standard finite element framework using the desired number of elements through the thickness regardless of the physical amount of layers. This allows easy modification of stacking sequences or the number of layers within the constitutive law without mesh structure changes, facilitating simulation of large-scale composite laminates with minimal accuracy loss and reduced computational costs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.