Abstract

Offshore wind turbines (OWT) are subjected to harsh environmental conditions in addition to the variable service loads. The present study is aimed at performing a realistic fatigue life estimation of the monopile structure using operational service loads recorded by online monitoring systems. Fatigue damage analysis has been conducted at the circumferential weld joints using finite element (FE) method by considering geometrical and material property discontinuities. Global-local modelling of the OWT was performed in as-welded condition to capture the local stress range at the weld toe, which acts as the critical site where cracks are most likely to initiate and propagate. The S-N fatigue design approach and maximum stress range at the weld toe have been used to determine the fatigue crack initiation life in monopiles. The results from the proposed approach show that a realistic life assessment can be made on monopile structures by accounting for the geometrical effects at the circumferential welds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.