Abstract
Abstract In the presented work, electrical traces were directly printed on 2 mil thick polyimide flexible substrate by a dispenser system using two different silver pastes, SW 1400 paste from Asahi Co. and 125-13 HV paste from Creative Materials Co. The dispenser printing parameters were optimized to achieve the finest possible line width and the printing quality of both materials was investigated. The electrical behavior of the dispensed traces was investigated by monitoring the change in the electrical resistance of the test samples during fatigue cycling at different strains, strain percentage of 1.50%, 2.0%, and 2.5% for different number of cycles up to 1000 cycles. The life time of the dispensed traces versus the applied strain was modeled using Coffin-Manson relation setting 20% change in the initial resistance as the failure criteria. Based on the change in the trace resistance during testing, we concluded that the dispensed SW 1400 silver paste traces were less robust than the dispensed 125-13 HV traces. The finer microstructure, smaller particle size, and shorter inter particles distances of the 125-13 HV silver paste enhanced its durability when subject to fatigue cycling. Moreover, 125-13 HV paste presented better and more uniform printed traces.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have