Abstract
Corrosion is nearly unavoidable phenomenon in most of the metal materials. In this paper, its effect on the sharp edge crack propagation under tensile loading is investigated. A rectangular plate with a perpendicular crack and an elliptical corrosion pit nearby is modelled via finite elements and fracture behavior of the crack is analyzed. The multi-parameter fracture mechanics concept is applied, i.e. the higher-order terms of the Williams expansion are calculated by means of the over-deterministic method and utilized for tangential stress approximation in the vicinity of the crack tip. Thus, the generalized MTS criterion could be used for estimation of the crack deflection angle. The calculations were performed for a selected corrosion pit size and location considering various crack lengths. The results are discussed and a crack length with the highest probability to deflect from its original perpendicular propagation direction is found.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.