Abstract

Crack growth during the fatigue of fiber-reinforced metal-matrix composites can be predicted analytically by determining the reduction in the crack tip stress intensity range resulting from fiber bridging. Various canonical functions exist that relate the crack tip stress intensity range to bridged crack geometries and loading for both infinite and finite width specimens; however, comprehensive crack growth predictions incorporating fiber failure require knowledge of the maximum fiber stress in the bridged zone for all notch sizes and crack lengths. Previous modeling efforts have been extended to predict complete growth curves with fiber failure for specimens of finite width. Functions for maximum fiber stresses in the bridged zone are presented here for a center crack in tension and edge cracks in tension and bending. The rapid increase in crack growth when fibers fail emphasizes the importance of determining the loads and notch sizes that mark the beginning of fiber failure. Critical loads for given notch sizes and fiber strengths are easily determined for finite width specimens using the functions presented in this work.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.