Abstract

An optimization procedure was developed to deduce the fiber bridging stresses from crack opening displacements measured in situ during crack growth. This procedure was used to determine the bridging stress distribution during fatigue crack growth in a unidirectionally reinforced metal matrix composite (SCS-6/TIMETAL®21S). The bridging stress is non-zero at the crack tip contrary to predictions from conventionally used shear lag models. The bridging stress at the crack tip is proportional to the applied far-field stress. The deduced bridging law is similar to the new shear lag models with non-zero bridging stresses at the crack tip. Any bridging model can be used to predict the crack growth behavior by choosing appropriate values of the frictional shear stress (T). Consequently, the magnitude of the stresses in the fibers bridging the crack will depend on the fiber bridging model. Hence, the fiber tensile strength required to predict the onset of fiber failure will also depend on the fiber bridging model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.